## Paper Reference(s) 66664/01 Edexcel GCE

## **Core Mathematics C2**

# Advanced Subsidiary

### Wednesday 20 May 2015 – Morning

### Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

#### **Instructions to Candidates**

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

#### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75.

#### Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(2-\frac{x}{4}\right)^{10},$$

(4)

(3)

(4)

giving each term in its simplest form.

**2.** A circle C with centre at the point (2, -1) passes through the point A at (4, -5).

- (a) Find an equation for the circle C.
- (b) Find an equation of the tangent to the circle C at the point A, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
- f(x) = 6x<sup>3</sup> + 3x<sup>2</sup> + Ax + B, where A and B are constants.
  Given that when f(x) is divided by (x + 1) the remainder is 45,
  (a) show that B A = 48.
  (b) find the value of A and the value of B.
  - (c) Factorise f(x) fully. (3)

2



Figure 1

Figure 1 shows a sketch of a design for a scraper blade. The blade *AOBCDA* consists of an isosceles triangle *COD* joined along its equal sides to sectors *OBC* and *ODA* of a circle with centre *O* and radius 8 cm. Angles *AOD* and *BOC* are equal. *AOB* is a straight line and is parallel to the line *DC*. *DC* has length 7 cm.

(a) Show that the angle COD is 0.906 radians, correct to 3 significant figures.

(2)

(b) Find the perimeter of AOBCDA, giving your answer to 3 significant figures.

(3)

(c) Find the area of AOBCDA, giving your answer to 3 significant figures.

(3)

5. (i) All the terms of a geometric series are positive. The sum of the first two terms is 34 and the sum to infinity is 162.

Find

- (a) the common ratio,
- (b) the first term.

(2)

(4)

(ii) A different geometric series has a first term of 42 and a common ratio of  $\frac{6}{7}$ .

Find the smallest value of n for which the sum of the first n terms of the series exceeds 290.

(4)

6. (a) Find

$$\int 10x(x^{\frac{1}{2}}-2) \, \mathrm{d}x,$$

giving each term in its simplest form.

(4)





Figure 2 shows a sketch of part of the curve C with equation

$$y = 10x(x^{\frac{1}{2}} - 2), \qquad x \ge 0.$$

The curve C starts at the origin and crosses the x-axis at the point (4, 0).

The area, shown shaded in Figure 2, consists of two finite regions and is bounded by the curve *C*, the *x*-axis and the line x = 9.

(b) Use your answer from part (a) to find the total area of the shaded regions.

(5)

- 7. (i) Use logarithms to solve the equation  $8^{2x+1} = 24$ , giving your answer to 3 decimal places.
- (3)

(ii) Find the values of y such that

$$\log_2(11y-3) - \log_2 3 - 2\log_2 y = 1, \qquad y > \frac{3}{11}.$$
(6)

8. (i) Solve, for  $0 \le \theta < \pi$ , the equation

$$\sin 3\theta - \sqrt{3} \cos 3\theta = 0$$

giving your answers in terms of  $\pi$ .

(ii) Given that

$$4\sin^2 x + \cos x = 4 - k, \qquad 0 \le k \le 3,$$

- (a) find  $\cos x$  in terms of k.
- (b) When k = 3, find the values of x in the range  $0 \le x < 360^{\circ}$ .

(3)

(3)

9. A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of  $75\pi$  cm<sup>3</sup>.

The cost of polishing the surface area of this glass cylinder is £2 per cm<sup>2</sup> for the curved surface area and £3 per cm<sup>2</sup> for the circular top and base areas.

Given that the radius of the cylinder is r cm,

(a) show that the cost of the polishing,  $\pounds C$ , is given by

$$C = 6\pi r^2 + \frac{300\pi}{r}.$$

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.

(5)

(4)

(c) Justify that the answer that you have obtained in part (b) is a minimum.

(1)

#### **TOTAL FOR PAPER: 75 MARKS**

#### END

(3)

### May 2015 6664 Core Mathematics C2 Mark Scheme

| Question<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left(2-\frac{x}{4}\right)^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |
| Way 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2^{10} + \underbrace{\binom{10}{1}}{2^9} \left(-\frac{1}{4} \frac{x}{=}\right) + \underbrace{\binom{10}{2}}{2^8} \left(-\frac{1}{4} \frac{x}{=}\right)^2 + \dots$ For <u>either</u> the x term <u>or</u> the x <sup>2</sup> term including a correct <u>binomial coefficient</u> with a <u>correct power of x</u>                                                                                                                                                                         | M1                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | First term of 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Either</b> $-1280x + 720x^2$ (Allow +-1280x here)                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= \frac{1024}{1280x} - 1280x + 720x$<br>Both $- 1280x$ and $720x^2$ (Do not allow +-1280x<br>here)                                                                                                                                                                                                                                                                                                                                                                                        | A1 [4]                 |  |  |
| Way 2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(2-\frac{x}{4}\right)^{10} = 2^k \left(1-\underbrace{\underline{10}}_{\underline{\underline{10}}} \times \underbrace{\underline{\underline{x}}}_{\underline{\underline{8}}} + \underbrace{\underline{10} \times 9}_{\underline{\underline{2}}} \left(-\underbrace{\underline{\underline{x}}}_{\underline{\underline{8}}}\right)^2_{\underline{\underline{2}}} \left(-\underbrace{\underline{\underline{x}}}_{\underline{\underline{8}}}\right)^2_{\underline{\underline{2}}}\right)$ | M1                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1024(1±)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= \underline{1024} - 1280x + 720x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>B1</u> A1 A1<br>[4] |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L I'I                  |  |  |
| M1: For <u>either</u> the x term <u>or</u> the $x^2$ term having correct structure i.e. a <u>correct</u> binomial coefficient in any form with the <u>correct power of x</u> . Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficients e.g. ${}^{10}C_1$ or $\begin{pmatrix} 10\\1 \end{pmatrix}$ or even $\begin{pmatrix} 10\\1 \end{pmatrix}$ or 10. The powers of 2 or of $\frac{1}{4}$ may be wrong or missing. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |
| <b>B1:</b> Award this for 1024 when first seen as a distinct constant term (not $1024x^0$ ) and not $1 + 1024$                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |
| A1: For one correct term in x with coefficient simplified. Either $-1280x$ or $720x^2$ (allow +-1280x here)                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |
| Allow 720x <sup>2</sup> to come from $\left(\frac{x}{4}\right)^2$ with no negative sign. So use of + sign throughout could give M1 B1 A1 A0                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |
| A1: For both                                                                                                                                                                                                                                                                                                                                                                                                                                                       | correct simplified terms i.e1280x and $720x^2$ ( <b>Do not</b> allow +-1280x here)                                                                                                                                                                                                                                                                                                                                                                                                         |                        |  |  |
| Allow ter                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ms to be listed for full marks e.g. $1024$ , $-1280x$ , $+720x^2$                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |
| N.B. If t                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hey follow a correct answer by a factor such as $512-640x + 360x^2$ then isw                                                                                                                                                                                                                                                                                                                                                                                                               |                        |  |  |
| Terms m                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terms may be listed. Ignore any extra terms.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |  |  |
| Notes for Way 2                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |
| M1: Correct structure for at least one of the underlined terms. i.e. a <u>correct</u> binomial coefficient in any form with the <u>correct</u> <u>power of x</u> . Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficients                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |
| e.g. ${}^{10}C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e.g. ${}^{10}C_1$ or $\begin{pmatrix} 10\\1 \end{pmatrix}$ or even $\begin{pmatrix} 10\\1 \end{pmatrix}$ or 10. k may even be 0 or $2^k$ may not be seen. Just consider the bracket for                                                                                                                                                                                                                                                                                                    |                        |  |  |
| this mar<br>B1: Needs 10                                                                                                                                                                                                                                                                                                                                                                                                                                           | k.<br>24(1 To become 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |  |  |
| A1, A1: as bef                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1, A1: as before                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |

| Question<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scheme                                                                                                                           |                                                                                         | Marks        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|--|
| 1 (unito er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Way 1                                                                                                                            | Way 2                                                                                   |              |  |
| 2 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(x \text{ m2})^2 + (y \pm 1)^2 = k, k > 0$                                                                                      | $x^2 + y^2 \operatorname{m}4x \pm 2y + c = 0$                                           | M1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Attempts to use $r^2 = (4-2)^2 + (-5+1)^2$                                                                                       | $4^2 + (-5)^2 - 4 \times 4 + 2 \times -5 + c = 0$                                       | M1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Obtains $(x-2)^2 + (y+1)^2 = 20$                                                                                                 | $x^2 + y^2 - 4x + 2y - 15 = 0$                                                          | A1 (3)       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>N.B. Special case:</b> $(x-2)^2 - (y+1)^2 = 20$ is                                                                            | not a circle equation but earns M0M1A0                                                  | (0)          |  |
| (b)<br>Way 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gradient of radius from centre to $(4, -5) = -2$                                                                                 | (must be correct)                                                                       | B1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tangent gradient = $-\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$                                    |                                                                                         |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$                                                                                |                                                                                         | M1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | So equation is $r = 2y = 14 = 0$ (or $2y = x + 1/2$                                                                              | 1 = 0 or other integer multiples of this answer)                                        | A1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | So equation is $x - 2y - 14 = 0$ (or $2y - x + 12$                                                                               | = 0 of other integer multiples of this answer)                                          |              |  |
| b)Way 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Vav 2</b> Quotes $rr' + uv' - 2(r + r') + (v + v') - 15 = 0$ and substitutes (4 - 5)                                          |                                                                                         |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4x-5y-2(x+4)+(y-5)-15=0  so  2x-4y-28=0  (or alternatives as in Way 1)                                                           |                                                                                         |              |  |
| b)Way 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>v 3</b> Use differentiation to find expression for gradient of circle                                                         |                                                                                         |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Either</b> $2(x-2) + 2(y+1)\frac{dy}{dx} = 0$ or states $y =$                                                                 | $-1 - \sqrt{20 - (x - 2)^2}$ so $\frac{dy}{dx} = \frac{(x - 2)}{\sqrt{20 - (x - 2)^2}}$ | B1           |  |
| Substitute $x = 4$ , $y = -5$ after valid differentiation to give gradient =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                         | M1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Then as Way 1 above $(y+5) = \frac{1}{2}(x-4)$ so $x - 2y - 14 = 0$                                                              |                                                                                         |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                         | (4)          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                         | [7]          |  |
| (a) M1: Uses centre to write down equation of circle in one of these forms. There may be sign slips as shown.<br>M1: Attempts distance between two points to establish $r^2$ (independent of first M1)- allow one sign slip only using distance formula with -5 or -1, usually (-5 - 1) in 2 <sup>nd</sup> bracket. Must not identify this distance as diameter.<br>This mark may alternatively (e.g. way 2)be given for substituting (4, -5) into a correct circle equation with one unknown<br>Can be awarded for $r = \sqrt{20}$ or for $r^2 = 20$ stated or implied but not for $r^2 = \sqrt{20}$ or $r = 20$ or $r = \sqrt{5}$ |                                                                                                                                  |                                                                                         |              |  |
| A1: Either of the answers printed or correct equivalent e.g. $(x-2)^2 + (y+1)^2 = (2\sqrt{5})^2$ is A1 but $2\sqrt{5}^2$ (no bracket) is A0 unless there is recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                         | acket) is A0 |  |
| Also $(x-2)^2 + (y-(-1))^2 = (2\sqrt{5})^2$ may be awarded M1M1A1as a correct equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                         |              |  |
| N.B. $(x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N.B. $(x-2)^2 + (y+1)^2 = 40$ commonly arises from one sign error evaluating r and earns M1M1A0                                  |                                                                                         |              |  |
| (b) Way 1:<br>B1: Must b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>(b) Way 1:</li><li>B1: Must be correct answer -2 if evaluated (otherwise may be implied by the following work)</li></ul> |                                                                                         |              |  |

M1: Uses negative reciprocal of their gradient

M1: Uses  $y - y_1 = m(x - x_1)$  with (4,-5) and their **changed** gradient or uses y = mx + c and (4, -5) with their changed gradient (not gradient of radius) to find c

A1: answers in scheme or multiples of these answers (must have "= 0"). NB Allow 1x - 2y - 14 = 0

N.B.  $(y+5) = \frac{1}{2}(x-4)$  following gradient of is  $\frac{1}{2}$  after errors leads to x - 2y - 14 = 0 but is worth B0M0M0A0 Way 2: Alternative method (b) is rare.

**Way 3:** Some may use implicit differentiation to differentiate- others may attempt to make *y* the subject and use chain rule **B1: the differentiation** must be accurate and the algebra accurate too. Need to take (-) root not (+)root in the alternative **M1:** Substitutes into their gradient function but must follow valid accurate differentiation

M1: Must use "their" tangent gradient and y+5 = m(x-4) but allow over simplified attempts at differentiation for this mark. A1: As in Way 1

| Question<br>Number                                                                                                                                                                                    | Scheme                                                                                                                                                                      | Marks         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| 3.                                                                                                                                                                                                    | $f(x) = 6x^3 + 3x^2 + Ax + B$                                                                                                                                               |               |  |  |  |
| Way 1 (a)                                                                                                                                                                                             | Attempting $f(1) = 45$ or $f(-1) = 45$                                                                                                                                      | M1            |  |  |  |
|                                                                                                                                                                                                       | $f(-1) = -6 + 3 - A + B = 45$ or $-3 - A + B = 45 \implies B - A = 48 * (allow 48 = B - A)$                                                                                 | A1 * cso      |  |  |  |
|                                                                                                                                                                                                       |                                                                                                                                                                             | (2)           |  |  |  |
| Way 1 (b)                                                                                                                                                                                             | Attempting $f(-\frac{1}{2}) = 0$                                                                                                                                            | M1            |  |  |  |
|                                                                                                                                                                                                       | $6\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 + A\left(-\frac{1}{2}\right) + B = 0 \text{ or } -\frac{1}{2}A + B = 0 \text{ or } A = 2B$                     | A1 o.e.       |  |  |  |
|                                                                                                                                                                                                       | Solve to obtain $B = -48$ and $A = -96$                                                                                                                                     | M1 A1 (4)     |  |  |  |
| Way 2 (a)                                                                                                                                                                                             | Long Division                                                                                                                                                               | M1            |  |  |  |
|                                                                                                                                                                                                       | $(6x^3 + 3x^2 + Ax + B) \div (x \pm 1) = 6x^2 + px + q$ and sets remainder = 45                                                                                             | 1 <b>VI</b> 1 |  |  |  |
|                                                                                                                                                                                                       | Quotient is $6x^2 - 3x + (A+3)$ and remainder is $B - A - 3 = 45$ so $B - A = 48$ *                                                                                         | A1*           |  |  |  |
| Way 2 (b)                                                                                                                                                                                             | $(6x^3 + 3x^2 + Ax + B) \div (2x + 1) = 3x^2 + px + q$ and sets remainder = 0                                                                                               | M1            |  |  |  |
|                                                                                                                                                                                                       | Quotient is $3x^2 + \frac{A}{2}$ and remainder is $B - \frac{A}{2} = 0$                                                                                                     | A1            |  |  |  |
|                                                                                                                                                                                                       | Then Solve to obtain $B = -48$ and $A = -96$ as in scheme above (Way 1)                                                                                                     | M1 A1         |  |  |  |
| (c)                                                                                                                                                                                                   | Obtain $(3x^2 - 48), (x^2 - 16), (6x^2 - 96), (3x^2 + \frac{A}{2}), (3x^2 + B), (x^2 + \frac{A}{6}) \text{ or } (x^2 + \frac{B}{3})$ as                                     | B1ft          |  |  |  |
|                                                                                                                                                                                                       | factor or as quotient after division by $(2x + 1)$ . Division by $(x+4)$ or $(x-4)$ see below                                                                               |               |  |  |  |
|                                                                                                                                                                                                       | Factorises $(3x^2 - 48), (x^2 - 16), (48 - 3x^2), (16 - x^2) \text{ or } (6x^2 - 96)$                                                                                       | M1            |  |  |  |
|                                                                                                                                                                                                       | = 3 $(2x + 1)(x + 4)(x - 4)$ (if this answer follows from a wrong A or B then award A0)                                                                                     | Alcso         |  |  |  |
|                                                                                                                                                                                                       | isw if they go on to solve to give $x = 4$ , $-4$ and $-1/2$                                                                                                                | (3) [9]       |  |  |  |
| Notes<br>(a) Way 1: M1: 1 or $-1$ substituted into $f(x)$ and expression put equal to $\pm 45$                                                                                                        |                                                                                                                                                                             |               |  |  |  |
| A1*: Answer is given. Must have substituted $-1$ and put expression equal to $+45$ .                                                                                                                  |                                                                                                                                                                             |               |  |  |  |
| Way 2.                                                                                                                                                                                                | Correct equation with powers of $-1$ evaluated and conclusion with no errors seen.                                                                                          |               |  |  |  |
| way 2.                                                                                                                                                                                                | Way 2: MI: Long division as far as a remainder which is set equal to $\pm 45$<br>A1*: See correct quotient and correct remainder and printed answer obtained with no errors |               |  |  |  |
| (b) Way 1: M1: Must see $f(-\frac{1}{2})$ and "= 0" unless subsequent work implies this.                                                                                                              |                                                                                                                                                                             |               |  |  |  |
|                                                                                                                                                                                                       | A1: Give credit for a correct equation even unsimplified when first seen, then isw.                                                                                         |               |  |  |  |
|                                                                                                                                                                                                       | A correct equation implies M1A1.                                                                                                                                            | ad linear     |  |  |  |
|                                                                                                                                                                                                       | equation in A and B from part (b) as far as $A =$ or $B =$ (must eliminate one of the co                                                                                    | onstants but  |  |  |  |
|                                                                                                                                                                                                       | algebra need not be correct for this mark). May just write down the correct answers.                                                                                        |               |  |  |  |
| Way 2.                                                                                                                                                                                                | A1: Both A and B correct                                                                                                                                                    |               |  |  |  |
| way 2.                                                                                                                                                                                                | A1: See correct quotient and correct remainder put equal to 0                                                                                                               |               |  |  |  |
|                                                                                                                                                                                                       | M1A1: As in Way 1                                                                                                                                                           |               |  |  |  |
| There may be a mixture of Way 1 for (a) and Way 2 for (b) or vice versa.<br>(c) <b>B1</b> : May be written straight down or from long division, inspection, comparing coefficients or pairing terms   |                                                                                                                                                                             |               |  |  |  |
| M1: Valid attempt to factorise a listed quadratic (see general notes) so $(3x-16)(x+3)$ could get M1A0                                                                                                |                                                                                                                                                                             |               |  |  |  |
| A1cso: (Cannot be awarded if A or B is wrong) Needs the answer in the scheme or $-3(2x+1)(4+x)(4-x)$ or equivalent but factor 3 must be shown and there must be all the terms together with brackets. |                                                                                                                                                                             |               |  |  |  |
| Way 2: A minority might divide by $(x-4)$ or $(x+4)$ obtaining $(6x^2+27x+12)$ or $(6x^2-21x-12)$ for B1                                                                                              |                                                                                                                                                                             |               |  |  |  |
| Т                                                                                                                                                                                                     | hey then need to factorise $(6x^2 + 27x + 12)$ or $(6x^2 - 21x - 12)$ for M1                                                                                                |               |  |  |  |
| Then A1cso as before                                                                                                                                                                                  |                                                                                                                                                                             |               |  |  |  |
| Special cases:<br>If they write down $f(r) = 3(2r+1)(r+4)(r-4)$ with no working this is B1 M1 A1                                                                                                      |                                                                                                                                                                             |               |  |  |  |
| But if they give $f(x) = (2x+1)(x+4)(x-4)$ with no working (from calculator?) give B1M0A0                                                                                                             |                                                                                                                                                                             |               |  |  |  |
| And $f(x) = ($                                                                                                                                                                                        | And $f(x) = (2x + 1)(3x + 12)(x - 4)$ or $f(x) = (6x + 3)(x + 4)(x - 4)$ or $f(x) = (2x + 1)(x + 4)(3x - 12)$ is B1M1A0                                                     |               |  |  |  |

| Question                                                                                                                                                                                                                                                                                                                                                                                               | Scheme                                                                                                                                                                                                                                                   | Marks         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| 4.(a)                                                                                                                                                                                                                                                                                                                                                                                                  | In triangle <i>OCD</i> complete method used to find angle <i>COD</i> so:                                                                                                                                                                                 |               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | Either $\cos C \Theta D = \frac{8^2 + 8^2 - 7^2}{2 \times 8 \times 8}$ or uses $\angle COD = 2 \times \arcsin \frac{3.5}{8}$ or $\angle COD =$                                                                                                           | M1            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | $(\angle COD = 0.9056(331894)) = 0.906(3sf) *$ accept awrt 0.906                                                                                                                                                                                         | A1 * (2)      |  |  |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                    | Uses $s = 8\theta$ for any $\theta$ in radians or $\frac{\theta}{360} \times 2\pi \times 8$ for any $\theta$ in degrees                                                                                                                                  | M1            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | $\theta = \frac{\pi - "COD"}{2}  (= awrt \ 1.12) \text{ or } 2\theta (= awrt \ 2.24) \text{ and Perimeter} = 23 + (16 \times \theta)$                                                                                                                    | M1            |  |  |
| (c)                                                                                                                                                                                                                                                                                                                                                                                                    | accept awrt 40.9 (cm)<br>Either Way 1: (Use of Area of two sectors + area of triangle)<br>Area of triangle = $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (or 25.1781155 accept awrt 25.2)or                                                        | A1 (3)        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{2} \times 8 \times 7 \times \sin 1.118$ or $\frac{1}{2} \times 7 \times h$ after <i>h</i> calculated from correct Pythagoras or trig.                                                                                                          | M1            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | Area of sector = $\frac{1}{2}8^2 \times "1.117979732"$ (or 35.77535142 accept awrt 35.8)                                                                                                                                                                 | M1            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | Total Area = Area of two sectors + area of triangle = awrt 96.7 or 96.8 or 96.9 ( $cm^2$ )                                                                                                                                                               | A1 (3)        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | Or Way 2: (Use of area of semicircle – area of segment)                                                                                                                                                                                                  |               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | Area of semi-circle = $\frac{1}{2} \times \pi \times 8 \times 8$ (or 100.5)                                                                                                                                                                              | MI            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | Area of segment = $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ (or 3.807)                                                                                                                                                                             | MI            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | So area required = awrt 96.7 or 96.8 or 96.9 ( $cm^2$ )                                                                                                                                                                                                  | A1 (3)<br>[8] |  |  |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                          |               |  |  |
| (a) M1: Eith<br>Or s                                                                                                                                                                                                                                                                                                                                                                                   | (a) M1: Either use correctly quoted cosine rule – may quote as $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha =$<br>Or split isosceles triangle into two right angled triangles and use arcsin or longer methods using Pythagoras |               |  |  |
| and                                                                                                                                                                                                                                                                                                                                                                                                    | arcos (i.e. $\pi - 2 \times \arccos \frac{3.5}{8}$ ). There are many ways of showing this result.                                                                                                                                                        |               |  |  |
| Must conclude that $\angle COD =$<br>A1*: (NB this is a given answer) If any errors or over-approximation is seen this is A0. It needs correct work leading to<br>stated answer of 0.906 or awrt 0.906 for A1. The cosine of <i>COD</i> is equal to 79/128 or awrt 0.617. Use of 0.62 (2sf)<br>does not lead to printed answer. They may give 51.9 in degrees then convert to radians. This is fine.   |                                                                                                                                                                                                                                                          |               |  |  |
| The rearr                                                                                                                                                                                                                                                                                                                                                                                              | minimal solution $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha = \dots 0.906$ (with no errors seen) can have M1A1 but anging result in M1A0                                                                                      | it errors     |  |  |
| (b) <b>M1</b> : Use                                                                                                                                                                                                                                                                                                                                                                                    | es formula for arc length with $r = 8$ and any angle i.e. $s = 8\theta$ if working in rads or $s = \frac{\theta}{360} \times 2\pi \times 8$ in $\sigma$                                                                                                  | degrees       |  |  |
| <ul> <li>(If the formula is quoted with r the 8 may be implied by the value of their rθ)</li> <li>M1: Uses angles on straight line (or other geometry) to find angle BOC or AOD and uses Perimeter = 23 + arc lengths BC and AD (may make a slip – in calculation or miscopying)</li> <li>A1: correct work leading to awrt 40.9 not 40.8 (do not need to see cm) This answer implies M1M1A1</li> </ul> |                                                                                                                                                                                                                                                          |               |  |  |
| (c) Way 1: M1: Mark is given for correct statement of area of triangle $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (must use correct                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |               |  |  |
| angle) or for correct answer (awrt 25.2) Accept alternative correct methods using Pythagoras and ½ base×height                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |               |  |  |
| M1: Mark is given for formula for area of sector $\frac{1}{2}8^2 \times "1.117979732"$ with $r = 8$ and their angle <i>BOC</i> or <i>AOD</i> or                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |               |  |  |
| (BOC + AOD) not COD. May use $A = \frac{\theta}{360} \times \pi \times 8^2$ if working in degrees                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |               |  |  |
| A1: Correct work leading to awrt 96.7, 96.8 or 96.9 (This answer implies M1M1A1)                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |               |  |  |
| Way 2: M1: Mark is given for correct statement of area of semicircle $\frac{1}{2} \times \pi \times 8 \times 8$ or for correct answer 100.5                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |               |  |  |
| <b>M1</b> : Mark is given for formula for area of segment $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ with $r = 8$ or 3.81 A1: As in Way 1                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          | -             |  |  |

| Question                                                                                                                                         | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| 5.(i)                                                                                                                                            | Mark (a) and (b) together                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                        |  |  |  |
| (a)                                                                                                                                              | $a + ar = 34$ or $\frac{a(1-r^2)}{(1-r)} = 34$ or $\frac{a(r^2-1)}{(r-1)} = 34$ ; $\frac{a}{1-r} = 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1; B1                   |  |  |  |
| (Way 1)                                                                                                                                          | Eliminate <i>a</i> to give $(1+r)(1-r) = \frac{17}{81}$ or $1-r^2 = \frac{34}{162}$ . (not a cubic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aM1                      |  |  |  |
|                                                                                                                                                  | (and so $r^2 = \frac{64}{81}$ and) $r = \frac{8}{9}$ only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aA1                      |  |  |  |
| (b)                                                                                                                                              | Substitute their $r = \frac{8}{9}$ ( $0 < r < 1$ ) to give $a = a = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4)<br>bM1<br>bA1<br>(2) |  |  |  |
| (Way 2)<br>Part (b)<br>first                                                                                                                     | Eliminate <i>r</i> to give $\frac{34-a}{a} = 1 - \frac{a}{162}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bM1                      |  |  |  |
|                                                                                                                                                  | gives $a = 18$ or 306 and rejects 306 to give $a = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bA1                      |  |  |  |
| Then part<br>(a) again                                                                                                                           | Substitute $a = 18$ to give $r =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aM1                      |  |  |  |
|                                                                                                                                                  | $r = \frac{8}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aA1                      |  |  |  |
| (ii)                                                                                                                                             | $\frac{42(1-\frac{6}{7}^n)}{1-\frac{6}{7}} > 290$ (For trial and improvement approach see notes below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                       |  |  |  |
|                                                                                                                                                  | to obtain So $\left(\frac{6}{7}\right)^n < \left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^n > \left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^n < \left(\frac{2}{147}\right)$                                                                                                                                                                                                                                                                                                                                                                                                    | A1                       |  |  |  |
|                                                                                                                                                  | So $n > \frac{\log''(\frac{4}{294})''}{\log(\frac{6}{7})}$ or $\log_{\frac{6}{7}}''(\frac{4}{294})''$ or equivalent but must be log of positive quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                       |  |  |  |
|                                                                                                                                                  | (i.e. $n > 27.9$ ) so $n = 28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 (4)                   |  |  |  |
| (i) (a) B1<br>B1<br>Way 1: aM                                                                                                                    | Notes(i) (a) <b>B1</b> : Writes a correct equation connecting a and r and 34 (allow equivalent equations – may be implied) <b>B1</b> : Writes a correct equation connecting a and r and 162 (allow equivalent equation – may be implied) <b>Way 1</b> : a <b>M1</b> : Eliminates a correctly for these two equations to give $(1+r)(1-r) = \frac{17}{81}$ or $(1+r)(1-r) = \frac{34}{162}$ or equivalent – <b>not a cubic</b> – should have factorized $(1 - r)$ to give a correct quadratic                                                                                                                        |                          |  |  |  |
| aA                                                                                                                                               | 1: Correct value for <i>P</i> . Accept 0.8 recurring or 8/9 (not 0.889) Must only have positive value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |  |  |  |
| bN<br>bA<br>Way 2: Fin                                                                                                                           | <b>11</b> : Substitutes their $r$ ( $0 < r < 1$ ) into a correct formula to give value for $a$ . Can be implied by $a = 18$<br><b>1</b> : must be 18 (not answers which round to 18)<br>and a first <b>P1 P1</b> : As before then award the (b) M and A marks before the (a) M and A marks                                                                                                                                                                                                                                                                                                                          |                          |  |  |  |
| bM                                                                                                                                               | 1: Eliminates <i>r</i> correctly to give $\frac{34-a}{a} = 1 - \frac{a}{a}$ or $a^2 - 324a + 5508 = 0$ or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |  |
| bA1                                                                                                                                              | a 162<br>bA1: Correct value for <i>a</i> so $a = 18$ only. (Only award after 306 has been rejected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |  |  |  |
| aN                                                                                                                                               | aMI: Substitutes their 18 to give $r =$<br>aA1: $r = \frac{8}{2}$ only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |  |  |  |
| (ii) M1: Allow <i>n</i> or <i>n</i> – 1 and any symbols from ">", "<", or "=" etc A1 : Must be power <i>n</i> (not <i>n</i> – 1) with any symbol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |  |  |  |
| <b>M1</b> : U                                                                                                                                    | <b>M1</b> : Uses logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on (36) <sup><i>n</i></sup> to get as far as <i>n</i> Allow any symbol                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |  |  |  |
| A1: $n$<br>lo<br>Special cas<br>- n = 28                                                                                                         | <ul> <li>A1: n = 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative log(<sup>6</sup>/<sub>7</sub>) or any contradictory statements must be penalised here) Those with equals throughout may gain this mark if the follow 27.9 by n=28. Just n = 28 without mention of 27.9 is only allowed following correct inequality work.</li> <li>Special case: Trial and improvement: Gives n = 28 as S = awrt 290.1 (M1A1)and when n = 27 S = (awrt) 289 so n = 28 (M1A - n = 28 with no working is M1A0M0A0 and insufficient accuracy is M1A0M1A0</li> </ul> |                          |  |  |  |
| Uses nin te                                                                                                                                      | in insteau of sum of n terms – over simplifieu – uo not treat as misreau – awaru 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |  |

| Question<br>Number                                                                                                                                                                                  | Scheme                                                                                                                                            | Marks         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
|                                                                                                                                                                                                     | May mark (a) and (b) together                                                                                                                     |               |  |  |  |
| <b>6.</b> (a)                                                                                                                                                                                       | Expands to give $10x^{\frac{3}{2}} - 20x$                                                                                                         | B1            |  |  |  |
|                                                                                                                                                                                                     | $10  \frac{10}{5}  -20'' x^2  (1)$                                                                                                                | M1 A1ft       |  |  |  |
|                                                                                                                                                                                                     | Integrates to give $\frac{15}{2}$ $x^2 + \frac{1}{2}$ (+ c)                                                                                       |               |  |  |  |
|                                                                                                                                                                                                     | $S' = 1^{12} S' = 4 + \frac{5}{2} = 10 + \frac{2}{2} (1 - 1)$                                                                                     | A1cao         |  |  |  |
| (1-)                                                                                                                                                                                                | Simplifies to $4x^2 - 10x (+c)$                                                                                                                   | (4)           |  |  |  |
| (0)                                                                                                                                                                                                 | Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted)                                                     |               |  |  |  |
|                                                                                                                                                                                                     | Use limits 4 and 9 either way round on their integrated function                                                                                  | dMT           |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |
|                                                                                                                                                                                                     | Obtains either $\pm -32$ or $\pm 194$ needs at least one of the previous M marks for this to be awarded                                           | A1            |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |
|                                                                                                                                                                                                     | $(S_{2}, a_{2}a_{2}) = \begin{vmatrix} 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$                                                         | ddM1,A1       |  |  |  |
|                                                                                                                                                                                                     | $(30 \text{ area} - \int_{0}^{1} y dx + \int_{4}^{1} y dx) = 1.6.32 + 194, -220$                                                                  | (5)           |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   | [9]           |  |  |  |
|                                                                                                                                                                                                     | Notes                                                                                                                                             |               |  |  |  |
| (a) <b>B1</b> : Ex                                                                                                                                                                                  | pands the bracket correctly                                                                                                                       |               |  |  |  |
| M1: Co                                                                                                                                                                                              | prrect integration process on at least one term after attempt at multiplication. (Follow correct exp $\frac{1}{3}$                                | pansion or    |  |  |  |
| one slij                                                                                                                                                                                            | p resulting in $10x^{k} - 20x$ where k may be $\frac{1}{2}$ or $\frac{5}{2}$ or resulting in $10x^{2} - Bx$ , where B may be 2                    | 2 or 5)       |  |  |  |
| $\mathbf{S}_{\mathbf{O}} = \mathbf{w}^{\frac{3}{2}}$                                                                                                                                                | $x^{\frac{1}{2}}$ or $x^{\frac{1}{2}}$ or $x^{\frac{1}{2}}$ or $x^{\frac{5}{2}}$ and/or $x^{\frac{2}{2}}$                                         |               |  |  |  |
| $50 x^2$                                                                                                                                                                                            | $\rightarrow \frac{5}{5/2}$ or $x^2 \rightarrow \frac{3}{3/2}$ or $x^2 \rightarrow \frac{7}{7/2}$ and/or $x \rightarrow \frac{1}{2}$ .            |               |  |  |  |
| A1: Co                                                                                                                                                                                              | A1: Correct unsimplified follow through for both terms of their integration. Does not need $(+ c)$                                                |               |  |  |  |
| <b>A1:</b> Mı                                                                                                                                                                                       | ist be simplified and correct– allow answer in scheme or $4x^{2\frac{1}{2}} - 10x^2$ . Does not need (+ c)                                        |               |  |  |  |
| (b) M1: (d                                                                                                                                                                                          | oes not depend on first method mark) Attempt to substitute 4 into their integral (however obtained                                                | ed but        |  |  |  |
| 1                                                                                                                                                                                                   | must not be differentiated) or seeing their evaluated number (usually 32) is enough – do not need to see                                          |               |  |  |  |
| dM1: (                                                                                                                                                                                              | d <b>M1:</b> (depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and 9                                  |               |  |  |  |
| Ì                                                                                                                                                                                                   | $A \times 9^{\frac{5}{2}} - B \times 9^{2}$ with $A \times 4^{\frac{5}{2}} - B \times 4^{2}$ is enough - or seeing 162 - (-32) {but not 162 - 32} |               |  |  |  |
| A1: At                                                                                                                                                                                              | least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b))                                                  |               |  |  |  |
| or                                                                                                                                                                                                  | may see $162 + 32 + 32$ or $162 + 64$ or may be implied by correct final answer if not evaluated un                                               | til last line |  |  |  |
| to<br>د1Mdh                                                                                                                                                                                         | WORKING<br>Adds 32 and 194 (may see $162 + 32 + 32$ or may be implied by correct final answer if not evalua                                       | ted until     |  |  |  |
| las                                                                                                                                                                                                 | st line of working). This depends on everything being correct to this point.                                                                      | tea until     |  |  |  |
| A1cao:                                                                                                                                                                                              | Final answer of 226 not (-226)                                                                                                                    |               |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |
| Common errors: $4 \times 4^{\overline{2}} - 10 \times 4^{2} + 4 \times 9^{\overline{2}} - 10 \times 9^{2} - 4 \times 4^{\overline{2}} - 10 \times 4^{2} = \pm 162$ obtains M1 M1 A0 (neither 32 nor |                                                                                                                                                   |               |  |  |  |
| Uses correct limits to obtain $-32 + 162 + 32 = \pm/-162$ is M1 M1 A1 (32 seen) M0 A0 so 3/5                                                                                                        |                                                                                                                                                   |               |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |
| Special case: In part (b) Uses limits 9 and $0 = 972 - 810 - 0 = 162$ M0 M1 A0 M0A0 scores 1/5                                                                                                      |                                                                                                                                                   |               |  |  |  |
| I his also a                                                                                                                                                                                        | ipplies 11 4 never seen.                                                                                                                          |               |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                   |               |  |  |  |

| Question<br>Number | Scheme                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks           |
|--------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                    | $8^{2x+1} = 24$                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | $(2x+1)\log 8 = \log 24$ or                                                                                       | or $8^{2x} = 3$ and so $(2x)\log 8 = \log 3$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 7. (1)             | $(2x+1) = \log_8 24$                                                                                              | $(2x) = \log_8 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1              |
|                    | $1(\log 24)$ 1                                                                                                    | $1(\log 3)$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                    | $x = \frac{1}{2} \left( \frac{\log 1}{\log 8} - 1 \right)$ or $x = \frac{1}{2} \left( \log_8 24 - 1 \right)$      | $x = \frac{1}{2} \left( \frac{\log 3}{\log 8} \right)$ or $x = \frac{1}{2} (\log_8 3)$ o.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dM1             |
|                    | =0.264                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1              |
|                    | $\log (11v - 3) - \log 3 - 2\log v = 1$                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)             |
| (ii)               | $\log_2(11y - 3) = \log_2 3 - \log_2 y^2 - 1$                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1              |
|                    | $\log_2(11y-3) = \log_2 3 = \log_2 y = 1$                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IVI I           |
|                    | $\log_2 \frac{(11y-3)}{3y^2} = 1$ or $\log_2 \frac{(11y-3)}{y^2}$                                                 | $\frac{3}{2} = 1 + \log_2 3 = 2.58496501$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dM1             |
|                    | $\log_2 \frac{(11y-3)}{2} = \log_2 2$ or $\log_2 \frac{(11y-3)}{2} =$                                             | = log, 6 (allow awrt 6 if replaced by 6 later)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1              |
|                    | $3y^2$ $y^2$ $y^2$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 1             |
|                    | Obtains $6y^2 - 11y + 3 = 0$ o.e. i.e. $6y^2 = 11y$                                                               | y-3 for example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | Solves quadratic to give $y =$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | $y = \frac{1}{3}$ and $\frac{3}{2}$ (need both- one should not be rejected)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Notes (i)          | M1: Takes logs and uses low of nowers correct                                                                     | ly (Any log base may be used) Allow lack of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [9]<br>braakats |
| Notes (I)          | <b>dM1</b> : Make x subject of their formula correctly (may evaluate the log before subtracting 1 and             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | calculate e.g. $(1.528 - 1)/2$ )                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | AI: Allow answers which round to 0.264                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| (ii)               | M1: Applies power law of logarithms replacing                                                                     | g $2\log_2 y$ by $\log_2 y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                    | dM1: Applies quotient or product law of logarithms correctly to the three log terms including term in             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | $y^2$ . (dependent on first M mark) or applies quotient rule to two terms and collects constants (allow           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | "triple" fractions) $1 + \log_2 3$ on RHS is not sufficient – need $\log_2 6$ or 2.58                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | e.g. $\log_2(11y - 3) = \log_2 3 + \log_2 y^2 + \log_2 2$ becoming $\log_2(11y - 3) = \log_2 6y^2$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | <b>B1</b> : States or uses $\log_2 2 = 1$ or $2^1 = 2$ at any point in the answer so may be given for             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | $\log_2(11y-3) - \log_2 3 - 2\log_2 y = \log_2 2$ or for $\frac{(11y-3)}{3v^2} = 2$ , for example (Sometimes this |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | mark will be awarded before the second M mark, and it is possible to score M1M0B1in some cases)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | Or may be given for $\log_2 6 = 2.584962501$ or $2^{2.584962501} = 6$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                    | A1: This or equivalent quadratic equation (does                                                                   | s not need to be in this form but should be equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation)          |
|                    | log work using factorising, completion of squar                                                                   | e, formula or implied by both answers correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | easonable       |
|                    | A1: Any equivalent correct form – need both ar                                                                    | nswers- allow awrt 0.333 for the answer $1/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                    | *NB: If "=0" is missing from the equation but c                                                                   | candidate continues correctly and obtains the second s | ect             |
|                    | throughout)                                                                                                       | ipned (Anow use of x or other varable instead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01 <i>y</i>     |

| Question<br>Number                                                                                                                                                                                       | Scheme                                                                                |                                                                                                            | Mark                       | (S  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|-----|
|                                                                                                                                                                                                          | Way 1: Divides by $\cos 3\theta$ to give                                              | Or Way 2: Squares both sides, uses                                                                         |                            |     |
| <b>9</b> (i)                                                                                                                                                                                             | $\tan 3\theta = \sqrt{3}$ so                                                          | $\cos^2 3\theta + \sin^2 3\theta = 1$ , obtains                                                            | М1                         |     |
| <b>ð.</b> (1)                                                                                                                                                                                            | $(3\theta) = \frac{\pi}{2}$                                                           | $\cos 3\theta = \pm \frac{1}{2}$ or $\sin 3\theta = \pm \frac{\sqrt{3}}{3}$ so $(3\theta) = \frac{\pi}{2}$ | IVI I                      |     |
|                                                                                                                                                                                                          | 3                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       |                            |     |
|                                                                                                                                                                                                          | Adds $\pi$ or $2\pi$ to previous value of ar                                          | agle (to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$ )                                                       | M1                         |     |
|                                                                                                                                                                                                          | So $\theta = \frac{\pi}{9}, \frac{4\pi}{9}$                                           | , $\frac{7\pi}{9}$ (all three, no extra in range)                                                          | A1 (                       | (3) |
| (ii)(a)                                                                                                                                                                                                  | $4(1 - \cos^2 x) + \cos x = 4 - k$                                                    | Applies $\sin^2 x = 1 - \cos^2 x$                                                                          | M1                         |     |
|                                                                                                                                                                                                          | Attempts to solve $4\cos^2 x - \cos x - k =$                                          | = 0, to give $\cos x =$                                                                                    | dM1                        |     |
|                                                                                                                                                                                                          | $1 \pm \sqrt{1 + 16k}$ or $\cos x = \frac{1}{4}$                                      | $\frac{1}{k}$ or other correct equivalent                                                                  |                            | 3)  |
|                                                                                                                                                                                                          | $\frac{\cos x - \frac{1}{8}}{\frac{8}{5}}$ or $\cos x - \frac{1}{8} + \sqrt{1}$       | $\frac{1}{64} + \frac{1}{4}$ of other correct equivalent                                                   | /// ( <b>·</b>             | 5)  |
| (b)                                                                                                                                                                                                      | $\cos x = \frac{1 \pm \sqrt{49}}{8} = 1$ and $-\frac{3}{4}$ (see the                  | e note below if errors are made)                                                                           | M1                         |     |
|                                                                                                                                                                                                          | Obtains two solutions from $0$ , 139, 22                                              | (0 or 2.42 or 3.86 in radians)                                                                             | dM1                        |     |
|                                                                                                                                                                                                          | <i>x</i> = 0 and 139 and 221 (allow awrt 139                                          | and 221) must be in degrees                                                                                | Al                         | (3) |
|                                                                                                                                                                                                          |                                                                                       |                                                                                                            |                            | [9] |
|                                                                                                                                                                                                          |                                                                                       | Notes                                                                                                      | -                          |     |
| (i) <b>M1</b> : Ol                                                                                                                                                                                       | ptains $\frac{\pi}{3}$ . Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$ . | Need not see working here. May be implied by                                                               | $\theta = \frac{\pi}{9}$ i | n   |
| fina                                                                                                                                                                                                     | l answer ( allow $(3\theta) = 1.05$ or $\theta = 0.34$                                | 9 as decimals or $(3\theta) = 60$ or $\theta = 20$ as degree                                               | es for th                  | his |
| mar                                                                                                                                                                                                      | k)                                                                                    |                                                                                                            |                            |     |
| Do i                                                                                                                                                                                                     | not allow $\tan 3\theta = -\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$      | =<br>}                                                                                                     |                            |     |
| M1: Ac                                                                                                                                                                                                   | Iding $\pi$ or $2\pi$ to a previous value however                                     | ver obtained. It is not dependent on the previous $\vec{z}$                                                | mark.                      |     |
| (May be implied by final answer of $\theta = \frac{4\pi}{9}$ or $\frac{7\pi}{9}$ ). This mark may also be given for answers as                                                                           |                                                                                       |                                                                                                            |                            |     |
| decimals [4.19 or 7.33], or degrees ( 240 or 420).                                                                                                                                                       |                                                                                       |                                                                                                            |                            |     |
| Three correct answers implies M1M1A1                                                                                                                                                                     |                                                                                       |                                                                                                            |                            |     |
| NB : $\theta = 20^{\circ}$ , 80°, 140° earns M1M1A0 and 0.349, 1.40 and 2.44 earns M1M1A0                                                                                                                |                                                                                       |                                                                                                            |                            |     |
| (ii) (a) <b>M1</b>                                                                                                                                                                                       | : Applies $\sin^2 x = 1 - \cos^2 x$ (allow even                                       | if brackets are missing e.g. $4 \times 1 - \cos^2 x$ ).                                                    |                            |     |
| This must be awarded in (ii) (a) for an expression with k not after $k = 3$ is substituted.<br><b>dM1</b> : Uses formula or completion of square to obtain $\cos x = \exp ression in k$                  |                                                                                       |                                                                                                            |                            |     |
| (Factorisation attempt is M0) A1: cao - award for their final simplified expression                                                                                                                      |                                                                                       |                                                                                                            |                            |     |
| (b) M1: Either attempts to substitute $k = 3$ into their answer to obtain two values for $\cos x$<br>Or restarts with $k = 3$ to find two values for $\cos x$ (They cannot earn marks in ii(a) for this) |                                                                                       |                                                                                                            |                            |     |
| In both cases they need to have applied $\sin^2 x = 1 - \cos^2 x$ (brackets may be missing) and correct                                                                                                  |                                                                                       |                                                                                                            |                            |     |
| method for solving their quadratic (usual rules – see notes) The values for $\cos x$ may be >1 or < -1 dM1. Obtains two correct values for x                                                             |                                                                                       |                                                                                                            |                            |     |
| A1: Obtains all three correct values in degrees (allow awrt 139 and 221) including 0. Ignore excess                                                                                                      |                                                                                       |                                                                                                            |                            |     |
| answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers.                                                                                          |                                                                                       |                                                                                                            |                            |     |
|                                                                                                                                                                                                          |                                                                                       |                                                                                                            |                            |     |

| Question                                                                                                                                                                                                                                                                               | Scheme                                                                                                                                                              |           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Number                                                                                                                                                                                                                                                                                 | Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing                                                                |           |  |
| <b>9.</b> (a)                                                                                                                                                                                                                                                                          | curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products                                                                |           |  |
|                                                                                                                                                                                                                                                                                        | Uses volume to give $(h =) \frac{75\pi}{\pi r^2}$ or $(h =) \frac{75}{r^2}$ (simplified) (if V is misread – see below)                                              | B1ft      |  |
|                                                                                                                                                                                                                                                                                        | $(C) = 6\pi r^{2} + 4\pi r \left(\frac{75}{r^{2}}\right)$<br>Substitutes expression for <i>h</i> into area or<br>cost expression of form $Ar^{2} + Brh$             | M1        |  |
|                                                                                                                                                                                                                                                                                        | $C = 6\pi r^2 + \frac{300\pi}{r} \qquad \qquad *$                                                                                                                   | A1* (4)   |  |
| (b)                                                                                                                                                                                                                                                                                    | $\left\{\frac{\mathrm{d}C}{\mathrm{d}r}\right\} = \left\{ 12\pi r - \frac{300\pi}{r^2}  \text{or}  12\pi r - 300\pi r^{-2} \text{ (then isw)} \right\}$             | M1 A1 ft  |  |
|                                                                                                                                                                                                                                                                                        | $12\pi r - \frac{300\pi}{r^2} = 0$ so $r^k$ = value where $k = \pm 2, \pm 3, \pm 4$                                                                                 | dM1       |  |
|                                                                                                                                                                                                                                                                                        | Use <b>cube</b> root to obtain $r = \left(their \frac{300}{12}\right)^{\frac{1}{3}}$ (= 2.92) - allow $r = 3$ , and thus $C =$                                      |           |  |
|                                                                                                                                                                                                                                                                                        | Then $C = awrt  483 \text{ or } 484$                                                                                                                                | A1cao (5) |  |
| (c)                                                                                                                                                                                                                                                                                    | $\left\{\frac{\mathrm{d}^2 C}{\mathrm{d}r^2}\right\} = \frac{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}$ | B1ft (1)  |  |
|                                                                                                                                                                                                                                                                                        | Notes                                                                                                                                                               | [10]      |  |
| (a) <b>B1:</b> States $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$                                                                                                                                                                                                                 |                                                                                                                                                                     |           |  |
| <b>B1ft:</b> (                                                                                                                                                                                                                                                                         | Obtains a <b>correct</b> expression for $h$ in terms of $r$ (ft only follows misread of $V$ )                                                                       |           |  |
| M1: Su                                                                                                                                                                                                                                                                                 | M1: Substitutes their expression for h into area or cost expression of form $Ar^2 + Brh$                                                                            |           |  |
| A1*: Had correct expression for C and achieves given answer in part (a) including "C =" or "Cost=" and no<br>errors seen such as $C$ = area expression without multiples of (£)3 and (£)2 at any point. Cost and area<br>must be perfectly distinguished at all stages for this A mark |                                                                                                                                                                     |           |  |
| N.B. Candidates using Curved Surface Area = $\frac{2V}{V}$ - please send to review                                                                                                                                                                                                     |                                                                                                                                                                     |           |  |
| (b) M1: Attempts to differentiate as evidenced by at least one term differentiated correctly                                                                                                                                                                                           |                                                                                                                                                                     |           |  |
| A1ft: Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then is if the power is misinterpreted (ft only for misread)                                                                                                                                                                |                                                                                                                                                                     |           |  |
| <b>dM1:</b> Sets their $\frac{dC}{dt}$ to 0, and obtains $r^k$ = value where $k = 2, 3$ or 4 (needs correct collection of powers of r                                                                                                                                                  |                                                                                                                                                                     |           |  |
| from their original derivative expression – allow errors dividing by $12\pi$ )                                                                                                                                                                                                         |                                                                                                                                                                     |           |  |
| <b>ddM1:</b> Uses <b>cube</b> root to find $r$ or see $r = awrt 3$ as evidence of cube root and substitutes into correct expression for $C$ to obtain value for $C$                                                                                                                    |                                                                                                                                                                     |           |  |
| A1: Accept awrt 483 or 484                                                                                                                                                                                                                                                             |                                                                                                                                                                     |           |  |
| (c) <b>B1ft: Finds</b> correct expression for $\frac{d^2C}{dr^2}$ and deduces value of $\frac{d^2C}{dr^2} > 0$ so minimum ( <i>r</i> may have been wrong)                                                                                                                              |                                                                                                                                                                     |           |  |
| OR checks gradient to left and right of 2.92 and shows gradient goes from negative to zero to positive so                                                                                                                                                                              |                                                                                                                                                                     |           |  |
| OR checks value of C to left and right of 2.92 and shows that $C > 483$ so deduces minimum (i.e. uses shape                                                                                                                                                                            |                                                                                                                                                                     |           |  |
| of graph) Only ft on misread of V for each ft mark (see below)                                                                                                                                                                                                                         |                                                                                                                                                                     |           |  |
| N.B. Some candidates have <b>misread</b> the volume as 75 instead of $75\pi$ . PTO for marking instruction.                                                                                                                                                                            |                                                                                                                                                                     |           |  |

Following this misread candidates cannot legitimately obtain the printed answer in part (a). Either they obtain  $C = 6\pi r^2 + \frac{300}{r}$ or they "fudge" their working to appear to give the printed answer.

The policy for a misread is **to subtract 2 marks from A or B marks**. In this case the A mark is to be subtracted from part (a) and the final A mark is to be subtracted from part (b)

The maximum mark for part (a) following this misread is 3 marks. The award is B1 B1 M1 A0 as a maximum. (a) B1: as before

B1: Uses volume to give  $(h =) \frac{75}{\pi r^2}$ 

M1: (C) = 
$$6\pi r^2 + 4\pi r \left(\frac{75}{\pi r^2}\right)$$

A0: Printed answer is not obtained without error

Most Candidates may then adopt the printed answer and gain up to full marks for the rest of the question so 9 of the 10 marks maximum in all.

Any candidate who proceeds with **their** answer  $C = 6\pi r^2 + \frac{300}{r}$  may be awarded up to 4 marks in part (b). These

are M1A1dM1ddM1A0 and then the candidate may also be awarded the B1 mark in part (c). So 8 of the 10 marks maximum in all.

(b) M1 A1: 
$$\left\{\frac{dC}{dr} = \right\} 12\pi r - \frac{300}{r^2}$$
 or  $12\pi r - 300r^{-2}$  (then isw)  
dM1:  $12\pi r - \frac{300}{r^2} = 0$  so  $r^k$  = value where  $k = 2, 3$  or 4 or  $12\pi r - \frac{300}{r^2} = 0$  so  $r^k$  = value

ddM1: Use **cube** root to obtain  $r = \left(their \frac{300}{12\pi}\right)^{\frac{1}{3}}$  (=1.996) - allow r = 2, and thus  $C = \dots$  must use

$$C = 6\pi r^2 + \frac{300}{r}$$

A0: Cannot obtain C = 483 or 484

(c) B1:  $\left\{\frac{d^2C}{dr^2} = \right\} 12\pi + \frac{600}{r^3} > 0$  so minimum OR checks gradient to left and right of 1.966 and shows gradient

goes from negative to zero to positive so minimum

OR checks value of C to left and right of 1.966 and shows that C > 225.4 so deduces minimum (i.e. uses shape of graph)

There is an example in Practice of this misread.